Схема подключения компрессора кондиционера с конденсатором

В современных помещениях уже длительное время с помощью кондиционеров создаются наиболее комфортные климатические условия. В жаркую погоду температура понижается до нужного значения, а в холодное время в помещении создается теплый микроклимат. Электрическая схема кондиционера применяется в различных типах и моделях. Они устанавливаются на стенах, на полу и под потолком. Благодаря современному дизайну, кондиционеры органично вписываются в интерьер любого помещения.

Основные типы кондиционеров

Разнообразие конструкций устройств кондиционирования воздуха позволяет применять их в самых разных местах. Например, модели мобильных кондиционеров не требуют монтажных работ. Из помещения на улицу выводится специальный блок или шланг для отвода теплого воздуха.

Очень простой монтаж и дальнейшее обслуживание у моноблочных устройств. В магистралях фреона нет никаких разъемов, поэтому его утечка полностью исключается. Такие кондиционеры отличаются низким шумом, обладают высоким КПД, однако, имеют довольно высокую стоимость.

Монтаж оконных кондиционеров осуществляется в проемах стен или окнах. При работе они производят много шума, но, благодаря низкой цене, удобству монтажа и обслуживания, пользуются широкой популярностью у потребителей.

Одной из разновидностей кондиционеров являются сплит-системы. Их конструкция включает в себя наружный и внутренний блок. Соединение обеих частей производится с помощью медных труб. По этим трубам происходит циркуляция хладона. Наружный блок состоит из компрессора, конденсатора, вентилятора и дросселя. Во внутреннем блоке установлен испаритель и вентилятор. Выпускается множество модификаций сплит-систем, что позволяет их устанавливать во многих местах.

Общая схема кондиционера

В каждом конденсаторе присутствуют основные элементы, выполняющие определенные функции. Внутри внешнего блока расположен конденсатор, превращающий газообразный хладагент в жидкую форму. Другим важным элементом является дроссель или терморегулирующий вентиль. С его помощью происходит снижение давления хладагента при подходе к испарителю. Сам испаритель изготовлен в виде радиатора, установленного во внутреннем блоке.

Во время снижения давления именно здесь осуществляется переход хладагента из жидкой в газообразную форму. С помощью компрессора хладагент сжимается и циркулирует по кругу. Вентиляторы создают потоки воздуха, необходимые для обдува испарителя и конденсатора. Соединение всех основных элементов выполняется с помощью медных трубок. В результате, образуется замкнутый контур, по которому происходит циркуляция хладагента.

Электрооборудование кондиционера

Все основные элементы систем кондиционирования не могут работать сами по себе. Всю работу обеспечивает электрическая схема кондиционера. Общая схема включает в себя несколько основных частей. Подключение межблочного кабеля к внутреннему блоку осуществляется при помощи клеммной колодки Terminal. В самой колодке имеется несколько клемм. N является электрической нейтралью, №2 подает питание с платы управления на компрессор, №3 обеспечивает работу вентилятора на первой скорости, а №4 – на второй скорости. Пятая клемма подает питание к приводу 4-х ходового клапана при переходе в режим обогрева.

Читать дальше:  Как снять подрулевой переключатель рено сандеро

В самом компрессоре существует три вывода: C, R и S, обозначающие соответственно, общий вывод обмоток, рабочую обмотку и стартовую обмотку двигателя компрессора для сдвига фаз. Кроме того,в схему включена защита от перегрузок и перегрева, а также клеммы для подключения вентилятора, конденсатора, электромагнитного клапана и других элементов.

Как работает кондиционер

Принципиальные электросхемы, подключение устройств и распиновка разъёмов

Есть 2 типа однофазных асинхронных двигателей — бифилярные (с пусковой обмоткой) и конденсаторные. Их различие в том, что в бифилярных однофазных двигателях пусковая обмотка работает только до разгона мотора. После она выключается специальным устройством — центробежным выключателем или пускозащитным реле (в холодильниках). Это нужно потому, что после разгона она снижает КПД.

В конденсаторных однофазных двигателях конденсаторная обмотка работает все время. Две обмотки — основная и вспомогательная, они смещены относительно друг друга на 90°. Благодаря этому можно менять менять направление вращения. Конденсатор на таких двигателях обычно крепится к корпусу и по этому признаку его несложно опознать.

Схема подключения однофазного двигателя через конденсатор

При подключении однофазного конденсаторного двигателя есть несколько вариантов схем подключения. Без конденсаторов электромотор гудит, но не запускается.

  • 1 схема — с конденсатором в цепи питания пусковой обмотки — хорошо запускаются, но при работе мощность выдают далеко не номинальную, а намного ниже.
  • 3 схема включения с конденсатором в цепи подключения рабочей обмотки дает обратный эффект: не очень хорошие показатели при пуске, но хорошие рабочие характеристики. Соответственно, первую схему используют в устройствах с тяжелым пуском, а с рабочим конденсором — если нужны хорошие рабочие характеристики.
  • 2 схема — подключения однофазного двигателя — установить оба конденсатора. Получается нечто среднее между описанными выше вариантами. Эта схема и используется чаще всего. Она на втором рисунке. При организации данной схемы тоже нужна кнопка типа ПНВС, которая будет подключать конденсатор только не время старта, пока мотор «разгонится». Потом подключенными останутся две обмотки, причем вспомогательная через конденсатор.

Схема подключения трёхфазного двигателя через конденсатор

Здесь напряжение 220 вольт распределяется на 2 последовательно соединенные обмотки, где каждая рассчитана на такое напряжение. Поэтому теряется мощность почти в два раза, но использовать такой двигатель можно во многих маломощных устройствах.

Читать дальше:  Дастер протекает задняя дверь

Максимальной мощности двигателя на 380 В в сети 220 В можно достичь используя соединение типа треугольник. Кроме минимальных потерь по мощности, неизменным остается и число оборотов двигателя. Здесь каждая обмотка используется на свое рабочее напряжение, отсюда и мощность.

Важно помнить: трехфазные электродвигатели обладают более высокой эффективностью, чем однофазные на 220 В. Поэтому если есть ввод на 380 В — обязательно подключайте к нему — это обеспечит более стабильную и экономичную работу устройств. Для пуска мотора не понадобятся различные пусковики и обмотки, потому что вращающееся магнитное поле возникает в статоре сразу после подключения к сети 380 В.

Онлайн расчет емкости конденсатора мотора

Введите данные для расчёта конденсаторов — мощность двигателя и его КПД

Есть специальная формула, по которой можно высчитать требуемую емкость точно, но вполне можно обойтись онлайн калькулятором или рекомендациями, которые выведены на основании многих опытов:

Рабочий конденсатор берут из расчета 0,8 мкФ на 1 кВт мощности двигателя;
Пусковой подбирается в 2-3 раза больше.

Конденсаторы должны быть неполярными, то есть не электролитическими. Рабочее напряжение этих конденсаторов должно быть минимум в 1,5 раза выше, чем напряжение сети, то есть, для сети 220 В берем емкости с рабочим напряжением 350 В и выше. А чтобы пуск проходил проще, в пусковую цепь ищите специальный конденсатор. У них в маркировке присутствует слова Start или Starting.

Пусковые конденсаторы для моторов

Эти конденсаторы можно подбирать методом от меньшего к большему. Так подобрав среднюю емкость, можно постепенно добавлять и следить за режимом работы двигателя, чтобы он не перегревался и имел достаточно мощности на валу. Также и пусковой конденсатор подбирают добавляя, пока он не будет запускаться плавно без задержек.

При нормальной работе трехфазных асинхронных электродвигателей с конденсаторным пуском, включенных в однофазную сеть предполагается изменение (уменьшение) емкости конденсатора с увеличением частоты вращения вала. В момент пуска асинхронных двигателей (особенно, с нагрузкой на валу) в сети 220 В требуется повышенная емкость фазосдвигающего конденсатора.

Реверс направления движения двигателя

Если после подключения мотор работает, но вал крутится не в том направлении, которое вам надо, можно поменять это направление. Это делают поменяв обмотки вспомогательной обмотки. Такую операцию может делать двухпозиционный переключатель, на центральный контакт которого подключается вывод от конденсатора, а на два крайних вывода от «фазы» и «нуля».

Выход из строя конденсаторов в цепи компрессора кондиционеров случается не так уж и редко. А зачем вообще нужен конденсатор и для чего он там стоит?

Читать дальше:  Реле стартера газель камминз где находится

Бытовые кондиционеры небольшой мощности в основном питаются от однофазной сети 220 В. Самые распространённые двигатели которые применяют в кондиционерах такой мощности- асинхронные со вспомогательной обмоткой, их называют двухфазные электродвигатели или конденсаторные.

В таких двигателях две обмотки намотаны так, что их магнитные полюсы расположены под углом 90 град. Эти обмотки отличаются друг от друга количеством витков и номинальными токами, ну соответственно и внутренним сопротивлением. Но при этом они рассчитаны так что при работе они имеют одинаковую мощность.

В цепь одной из этих обмоток, её производители обозначают как стартовую(пусковую), включают рабочий конденсатор, который постоянно находится в цепи. Этот конденсатор ещё называют фазосдвигающим, так как он сдвигает фазу и создаёт круговое вращающееся магнитное поле. Рабочая или основная обмотка подключена напрямую к сети.

Схема подключения пускового и рабочего конденсатора

Рабочий конденсатор постоянно включён в цепь обмотки через него протекает ток равный току в рабочей обмотке. Пусковой конденсатор подключается на время запуска компрессора — не более 3 секунд (в современных кондиционерах используется только рабочий конденсатор, пусковой не используется)

Расчёт ёмкости и напряжения рабочего конденсатора

Расчёт сводится к подбору такой емкости, чтобы при номинальной нагрузке было обеспечено круговое магнитное поле, так как при значении ниже или выше номинального магнитное поле изменяет форму на эллиптическое, а это ухудшает рабочие характеристки двигателя и снижает пусковой момент. В инженерных справочниках приведена формула для расчёта ёмкости конденсатора:

Ср= Isinφ/2πf U n 2

I и sinφ –ток и сдвиг фаз между напряжением и током в цепи при вращающемся магнтном поле без конденсатора

f- частота переменного тока

U – напряжение питания

n- коэффициент трансформации обмоток , определяется как соотношение витков обмоток с конденсатором и без него.

Напряжение на конденсаторе рассчитывается по формуле

Uc= U√(1+n 2 )

Uc -рабочее напряжение конденсатора

U — напряжение питания двигателя

n — коэффициент трансформации обмоток

Из формулы видно, что рабочее напряжение фазосдвигающего конденсатора выше напряжения питания двигателя.

В пособиях по расчёту приводят приближённое вычисление – 70-80 мкФ ёмкости конденсатора на 1 кВт мощности электродвигателя, а номинал напряжения конденсатора для сети 220 В обычно ставят — 450 В.

Также параллельно к рабочему конденсатору подключают пусковой конденсатор на время пуска, примерно на три секунды, после чего срабатывает реле и отключает пусковой конденсатор. В настоящее время в кондиционерах схемы с дополнительным пусковым конденсатором не применяют.

В более мощных кондиционерах используют компрессоры с трёхфазными асинхронными двигателями, пусковые и рабочие конденсаторы для таких двигателей не требуются.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock detector